Spatiotemporal Patterns of Contact Across the Rat Vibrissal Array During Exploratory Behavior
نویسندگان
چکیده
The rat vibrissal system is an important model for the study of somatosensation, but the small size and rapid speed of the vibrissae have precluded measuring precise vibrissal-object contact sequences during behavior. We used a laser light sheet to quantify, with 1 ms resolution, the spatiotemporal structure of whisker-surface contact as five naïve rats freely explored a flat, vertical glass wall. Consistent with previous work, we show that the whisk cycle cannot be uniquely defined because different whiskers often move asynchronously, but that quasi-periodic (~8 Hz) variations in head velocity represent a distinct temporal feature on which to lock analysis. Around times of minimum head velocity, whiskers protract to make contact with the surface, and then sustain contact with the surface for extended durations (~25-60 ms) before detaching. This behavior results in discrete temporal windows in which large numbers of whiskers are in contact with the surface. These "sustained collective contact intervals" (SCCIs) were observed on 100% of whisks for all five rats. The overall spatiotemporal structure of the SCCIs can be qualitatively predicted based on information about head pose and the average whisk cycle. In contrast, precise sequences of whisker-surface contact depend on detailed head and whisker kinematics. Sequences of vibrissal contact were highly variable, equally likely to propagate in all directions across the array. Somewhat more structure was found when sequences of contacts were examined on a row-wise basis. In striking contrast to the high variability associated with contact sequences, a consistent feature of each SCCI was that the contact locations of the whiskers on the glass converged and moved more slowly on the sheet. Together, these findings lead us to propose that the rat uses a strategy of "windowed sampling" to extract an object's spatial features: specifically, the rat spatially integrates quasi-static mechanical signals across whiskers during the period of sustained contact, resembling an "enclosing" haptic procedure.
منابع مشابه
A night in the life of a rat: vibrissal mechanics and tactile exploration.
The rat vibrissal (whisker) system is an increasingly important model for the study of the sense of touch. This paper describes recent results obtained from high-speed videography of rat exploratory behavior and from modeling studies of vibrissal biomechanics. We review several features of vibrissal touch, including the mechanics of contact versus noncontact whisking, the coordination between h...
متن کاملThe Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact
In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker) system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the th...
متن کاملThe search space of the rat during whisking behavior.
Rodents move their vibrissae rhythmically to tactually explore their surroundings. We used a three-dimensional model of the vibrissal array to quantify the rat's 'search space' during whisking. Search space was quantified either as the volume encompassed by the array or as the surface formed by the vibrissal tips. At rest, the average position of the vibrissal tips lies near the rat's mouth, an...
متن کاملUsing hardware models to quantify sensory data acquisition across the rat vibrissal array.
Our laboratory investigates how animals acquire sensory data to understand the neural computations that permit complex sensorimotor behaviors. We use the rat whisker system as a model to study active tactile sensing; our aim is to quantitatively describe the spatiotemporal structure of incoming sensory information to place constraints on subsequent neural encoding and processing. In the first p...
متن کاملProbability distributions of whisker-surface contact: quantifying elements of the rat vibrissotactile natural scene.
Analysis of natural scene statistics has been a powerful approach for understanding neural coding in the auditory and visual systems. In the field of somatosensation, it has been more challenging to quantify the natural tactile scene, in part because somatosensory signals are so tightly linked to the animal's movements. The present work takes a step towards quantifying the natural tactile scene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in behavioral neuroscience
دوره 9 شماره
صفحات -
تاریخ انتشار 2015